Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bale, Catherine (Ed.)The purpose of this paper is to leverage the growth of AI-enabled tools to support the democratization of mine observation (MO) research. Mining is essential to meet projected demand for renewable energy technologies crucial to global climate mitigation objectives, but all mining activities pose local and regional challenges to environmental sustainability. Such challenges can be mitigated by good governance, but unequal access among stakeholders to accurately interpreted satellite imagery can weaken good governance. Using readily available software—QGIS, and Segment Anything Model (SAM)—this paper develops and tests the reliability of MO-SAM, a new method to identify and delineate features within the spatially-explicit mine extent at a high level of detail. It focuses on dry tailings, waste dumps, and stockpiles in above-ground mining areas. While we intend for MO-SAM to be used generally, this study tested it on mining areas for energy-critical materials: lithium (Li), cobalt (Co), rare earth elements (REE), and platinum group elements (PGE), selected for their importance to the global transition to renewable energy. MO-SAM demonstrates generalizability through prompt engineering, but performance limitations were observed in imagery with complex mining landscape scenarios, including spatial variations in image morphology and boundary sharpness. Our analysis provides data-driven insights to support advances in the use of MO-SAM for analyzing and monitoring large-scale mining activities with greater speed than methods that rely on manual delineation, and with greater precision than practices that focus primarily on changes in the spatially-explicit mine extent. It also provides insights into the importance of multidisciplinary human expertise in designing processes for and assessing the accuracy of AI-assisted remote sensing image segmentation as well as in evaluating the significance of the land use and land cover changes identified. This has widespread potential to advance the multidisciplinary application of AI for scientific and public interest, particularly in research on global scale human-environment interactions such as industrial mining activities. This is methodologically significant because the potential and limitations of using large pre-trained image segmentation models such as SAM for analyzing remote sensing data is an emergent and underexplored issue. The results can help advance the utilization of large pre-trained segmentation models for remote sensing imagery analysis to support sustainability research and policy.more » « lessFree, publicly-accessible full text available July 15, 2026
-
Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.more » « less
-
State-of-the-art text spotting systems typically aim to detect isolated words or word-by-word text in images of natural scenes and ignore the semantic coherence within a region of text. However, when interpreted together, seemingly isolated words may be easier to recognize. On this basis, we propose a novel "semantic-based text recognition" (STR) deep learning model that reads text in images with the help of understanding context. STR consists of several modules. We introduce the Text Grouping and Arranging (TGA) algorithm to connect and order isolated text regions. A text-recognition network interprets isolated words. Benefiting from semantic information, a sequence-to-sequence network model efficiently corrects inaccurate and uncertain phrases produced earlier in the STR pipeline. We present experiments on two new distinct datasets that contain scanned catalog images of interior designs and photographs of protesters with hand-written signs, respectively. Our results show that our STR model outperforms a baseline method that uses state-of-the-art single-word recognition techniques on both datasets. STR yields a high accuracy rate of 90% on the catalog images and 71% on the more difficult protest images, suggesting its generality in recognizing text.more » « less
An official website of the United States government

Full Text Available